
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 18, 1083-1 105 (1994)

LARGE-SCALE COMPUTATIONAL FLUID DYNAMICS
BY THE FINITE ELEMENT METHOD

W . G. HABASHI
Concordia University, Montreal, Quebec, Canada and Praii & Whitney Canada, Montreal, Quebec, Canada

M. ROBICHAUD, V.-N. NGUYEN AND W. S. GHALY
Pratt & Whitney Canada, Montreal, Quebec, Canada

M. FORTIN
Universitk Laval, Quibec, Quebec, Canada

AND

J. W. H. LIU
York University, Toronto, Ontario, Canada

SUMMARY
Solution methods are presented for the large systems of linear equations resulting from the implicit, coupled
solution of the Navier-Stokes equations in three dimensions. Two classes of methods for such solution
have been studied: direct and iterative methods.

For direct methods, sparse matrix algorithms have been investigated and a Gauss elimination, optimized
for vector-parallel processing, has been developed. Sparse matrix results indicate that reordering algorithms
deteriorate for rectangular, i.e. M x M x N, grids in three dimensions as N gets larger than M. A new local
nested dissection reordering scheme that does not suffer from these difficulties, at least in two dimensions,
is presented. The vector-parallel Gauss elimination is very efficient for processing on today’s super-
computers, achieving execution rates exceeding 2.3 Gflops the Cray YMP-8 and 9.2 Gflops on the NEC
on SX3.

For iterative methods, two approaches are developed. First, conjugate-gradient-like methods are studied
and good results are achieved with a preconditioned conjugate gradient squared algorithm. Convergence
of such a method being sensitive to the preconditioning, a hybrid viscosity method is adopted whereby
the preconditioner has an artificial viscosity that is gradually lowered, but frozen at a level higher than
the dissipation introduced in the physical equations. The second approach is a domain decomposition one
in which overlapping domain and side-by-side methods are tested. For the latter, a Lagrange multiplier
technique achieves reasonable rates of convergence.

1. INTRODUCTION

The simulation of complex aerodynamic fields by means of inviscid and viscous flow equations
is rapidly becoming the preferred analysis and design tool in the aerospace industry. There is
no shortage of methods for discretizing the Euler and Navier-Stokes equations, with these
methods differing in their discretization of the time or pseudo-time term, space terms, linear-
ization and algebraic equation solution met hod.

The predominant space discretization methods in industrial practice are the finite difference
method (FDM) and finite volume method (FVM), with the finite element method (FEM) a distant

CCC 0271-2091/94/111083-23
0 1994 by John Wiley & Sons, Ltd.

Received April 1993
Revised December 1993

1084 W. G. HABASH ET AL.

third in North America. The FEM is often perceived as taxing on computer memory. The
situation is more evenly balanced in Europe and elsewhere, where the FEM is recognized as
providing flexibility in approximating complex geometries and in the ease of application of
boundary conditions. In practice, however, to distinguish between FVM and FEM takes a
well-trained eye, since the boundaries between the two are getting fuzzier. During space
discretization, methods also differ in applying the dissipation necessary to stabilize the numerical
solution. Two approaches are possible: centred schemes, with dissipation introduced through
an explicit artificial viscosity, or upwind schemes applied to the convective terms.

For time discretization, explicit and implicit approximations can be used. Explicit schemes
trade speed of convergence for simplicity by not requiring matrix solution. They are easily
vectorizable and parallelizable. To speed up convergence, various acceleration techniques are
used such as local time stepping, residual averaging and multigrid methods. Large-scale problems
are therefore more easily amenable to solution on today's computers, with a compromise between
large solution times and manageable memory resources. Implicit schemes, on the other hand,
allow much larger time steps at the cost of solving some matrices at each step. These range
from fully-coupled schemes, to AD1 schemes, all the way to schemes that only require the solution
of scalar tridiagonal matrices.

It must be appreciated, however, that the hierarchy of simplifications in the solution of the
coupled system of equations must be at the cost of additional iterations to obtain the same
overall convergence of the non-linear system. While it can be argued that coupled methods of
solution are currently impractical because of their memory requirements, it can be pointed out
that their convergence is not only much faster but also simpler, since the usual bells and whistles
of uncoupled methods are not needed. The slow convergence of explicit methods may also
sometimes lead to the temptation of accepting partially converged results under the argument
of sufficient engineering accuracy. This is not without danger, as was vividly demonstrated by
Pulliam'. After experiencing great difficulties with most well-known schemes for the Euler
equations, he challenged code developers to predict zero lift for subsonic flow over circular
cylinders and ellipses when the mesh is skewed to the freestream direction. In this problem the
convergence behaviour of the lift coefficient C, is such that it starts positive, crosses zero, becomes
negative and settles asymptotically to its final artificial-viscosity-dependent value, which may
not necessarily be zero. For the ellipse, none of the codes tested by Pulliam yielded a C , less
than 1-545, while for the cylinder the minimum was 13.66. Invariably the response was to propose
results from codes stopped after a larger number of iterations at about the time that zero lift
was being obtained, using the argument that acceptable engineering accuracy is reached by then.
When iteration is resumed in such codes, however, none was able to asymptotically predict zero
lift. A year later a second-order Godunov scheme2 only achieved a reduction of one order of
magnitude in lift.

We have presented a simple but effective method for the solution of the fully-coupled system
of inviscid (E ~ l e r) ~ and viscous (Na~ier-Stokes)~ equations. The scheme is a weak-Galerkin
formulation with simple Laplacian dissipation terms explicitly added to each of the Euler
equations, but only to be the continuity equation for Navier-Stokes formulations. The linear-
ization of the system is carried out via a Newton method, followed by a direct solution of the
coupled system of linear equations, at each iteration. This method has proven efficient and
accurate for both inviscid and viscous cases, yielding C,-values of O(for the test cases
proposed by Pulliam.

The coupled system of equations resulting from our two-dimensional formulation will include
the pressure (or density) and two velocity components and is amenable to a direct solver on a
large class of computers and workstations. For example, a flow having three variables (u, u, p)

LARGE-SCALE CFD BY THE FEM 1085

per cell vertex, discretized on an N x M structured grid, would require the solution of 3NM
equations with a bandwidth of 3N. The number of operations for such a direct solution is
estimated as 27MN3. For the equivalent three-dimensional problem on an L x N x M grid
the number of equations increased to 4 L M N and the bandwidth to 4NL. The number of
operations increases to 64MN3L3, i.e. 2.37L3 times the number for the two-dimensional
solution.

Preaching the use of coupled methods of solution is therefore not that clear-cut and the present
paper is only a step in a sustained effort to address the practical solution of such large
nonsymmetric systems of linear equations for three-dimensional flow situations. This includes
the development of solvers and techniques for direct or iterative solutions on vector and parallel
computers.

2. THE PROBLEM

The steady, three-dimensional compressible, variable viscosity, Navier-Stokes equations can be
written as

continuity

momentum

1
P(V.V)V + V(V.PV) = -VP + Re [-$V(pV*V) + v x p(V x V) + 2(V*pV)V], (2)

energy

equation of state

p / p = R T . (4)

It should be remarked that a pressure dissipation term &V2p has been added to the continuity
equation (2) for regularization. Such a Laplacian term with a small coefficient E prevents
odd-even decoupling or checkerboarding from occurring, without the need for unequal-order
interpolation of velocity and pressure in the FEM or staggered grids in the FDM.3*4 This
regularization term constitutes, however, a small error in mass that is reflected as a first-order
accuracy of the scheme. Second-order accuracy, when needed, can be achieved through the use
of a fourth-order operator and has been detailed in Reference 5.

In addition, a simplified energy equation, namely the constancy of total enthalpy, has been
used. This is a good approximation for the adiabatic viscous compressible flow of a perfect gas.
While the full energy equation can be, and has been, used in our work, our main purpose here
is to discuss solution schemes for the large systems of couple equations for three-dimensional
flows, presently restricted because of memory limitation to the continuity and momentum
system.

After FEM discretization and Newton linearization, the following representative delta form

1086 W. G . HABASH ET AL.

of the equations can be obtained for three-dimensional flows in terms of the cell vertex unknowns
of pressure and velocity components at the eight vertices of a trilinear element:

which can be written in matrix form as

This form could be taken as representative of the fully-coupled solution of an incompressible
flow or the fully-coupled solution of a compressible flow with the density lagged. Although the
FEM has been selected as the discretization scheme, the remainder of the paper applies equally
to the coupled equations resulting from the FDM or FVM, the only difference being in the way
the equations are assembled.

For a fully-coupled solution, quadratic convergence has been demonstrated for inviscid
transonic two-dimensional flows,3 with convergence to machine accuracy in about six iterations.
For three-dimensional flows, storage limitations dictate that the density be lagged and only
linear convergence can be achieved, with machine accuracy reached in about 30 iterations for
compressible viscous flows.4

The remainder of the paper will concentrate on presenting the schemes developed or tested
for the solution of matrices resulting from this coupled approach. These will include the direct
methods (a) sparse matrix technology and (b) parallel-vector Gauss elimination and the iterative
methods (a) preconditioned conjugate-gradient-like methods and (b) domain decomposition
algorithms.

3. DIRECT SOLVERS

3.1. Sparse matrix technology

Sparse matrix technology has been used for a wide variety of numerical problems requiring
the solution of large sparse sets of equations.697 More recently it has attracted interest for the
solution of CFD problems by direct methods. Some degree of success has been reported, for
example in Reference 8, where large two-dimensional problems have been tackled by such
methods. The method starts with a reordering algorithm that scans the matrix topology and
restructures it to minimize the storage. The reordered matrix is then decomposed by various
methods, often taking advantage of the architecture of modern computers.

LARGE-SCALE CFD BY THE FEM 1087

Reordering schemes in SPARSPAK. To identify the limits of applicability of this approach to
large three-dimensional CFD problems, SPARSPAK, a commercially available sparse matrix
package from the University of Waterloo and co-authored by one of the present authors, was
used. Three reordering schemes, namely reverse Cuthill-McKee (RCM), multiple minimum
degree (MMD) and nested dissection (ND), included in SPARSPAK, were tested and compared
with natural ordering.

Test cases were run on a cubic grid of size N x N x N , with N varying from 5 to 30, and the
results obtained are shown in Figures 1 and 2.

The MMD and N D reordering schemes are very efficient in reducing the storage requirements
and factorization operations of the natural ordering for large values of N . The RCM algorithm
invariably leads to reorderings and operations count, at least for cubic grids, that are worse
than natural ordering.

The performance of the reordering schemes changes dramatically, however, when the grid
density becomes asymmetric, i.e. increases in one direction, say M x M x N with N > M . The
efficiency of the MMD and ND algorithms suffers drastically. Figures 3 and 4 show that the
RCM algorithm recovers somewhat relative to other reordering methods, but never improves

40
8 e

ZF
a420

g 10

L-
o) a

z
0

5 10 15 20 25 30
Grid Size (NxNxN)

Figure 1. Storage requirements for various reordering schemes, cubic grids

40

c)

= 3 0 z u,
i?a .- 0 B20 *= e

10

0
5 10 15 20 25 30

Grid Size (NxNxN)

Figure 2. Factorization operations counts for various reordering schemes, cubic grids

1088 W. G. HABASH ET AL.

l A

0 2 0 4 0 60 80 loo
Grid Size (10xlOxN)

Figure 3. Storage requirements for various reordering schemes, rectangular grids

0 20 40 60 80 loo
Grid Size (10xlOxN)

Figure 4. Factorization count for various reordering schemes, rectangular grids

over the natural ordering. The MMD algorithm, on the other hand, deteriorates rapidly with
grid density asymmetry, while the N D algorithm shows a consistent improvement in storage
requirements but an unfavorable factorization count compared with natural ordering.

An improved method for asymmetric grids: local nested dissection. The above observations
provide the impetus for a new ordering scheme which combines the advantages of the natural
and ND orderings for asymmetric grid problems.’ Consider an N x M grid where N > M. The
new scheme would order the two rectangular subgrids, consisting of the first M / 2 rows and
the last M / 2 rows of the grid, using the standard ND ordering. The remaining N - M rows
of the grid would be numbered by considering a partitioning factor p, with I < p < M, and the
(N - M) x M rectangular grid divided into smaller square subgrids of size approximately M / p
by a set of horizontal and vertical grid lines. There would be p partitions horizontally and
p (N - M) / M vertically. This gives p2(N - M) / M square subgrids of size M / p . Each square
subgrid is ordered by the standard ND ordering. The remaining nodes associated with the
partitioning grid lines are then numbered using a scheme similar to the natural ordering, the
only difference being that a set of nodes associated with the boundary of a square subgrid is
numbered consecutively.

LARGE-SCALE CFD BY THE FEM 1089

1 7 4 19 10 16 13 1 7 4 19 10 16 13
3 8 6 20 12 17 15 3 8 6 20 12 17 15

23 30 26 42 32 39 35
24 29 27 41 33 38 36
23 30 26 42 32 39 35

With partitioning factorp = 2 With partitioning factorp = 4
Figure 5. Located nested dissection for a 15 x 7 grid with partitioning factors p = 2 and 4

To illustrate the numbering scheme, Figure 5 shows the orderings of a 7 x 15 grid with
partioning factors p = 2 and 4.

Since ND ordering is applied locally to a number of smaller subgrids, this ordering can be
referred to as a local nested dissection (LND) ordering. It should be remarked that if the grid
is square, this ordering becomes the standard ND. Moreover, the LND ordering with a partition
value p = 1 corresponds to a hybrid nested dissection strategy introduced by Rose and
Whitten." At the other extreme, i.e. for a large partition factor p close to M, LND is simply
the natural ordering: LND can hence be viewed as a generalization of the hybrid nested
dissection strategy of Reference 10.

Choice of partitioning value. In Figure 6 the number of factorization operations is shown
versus different values of p for a 500 x 60 grid problem. The minimum operations count of
21 x lo6 operations is attained for a partition value of about p = 5. For comparison, the
standard ND ordering requires 29.1 x lo6 operations to factor, while natural ordering requires
58.4 x lo6 operations.

The observation that the operations count is a minimum around p = 5 can be established

35

20

0 5 10 15 20
Partitioning factor p

Figure 6. Factorization operations count for different partitioning factors p for a 500 x 60 grid

1090 W. G. HABASH ET A L

formally for general rectangular grids. The following bound on the arithmetic operations can
be obtained by a simple count?

(N - M) M ~ (p + - + - - - ::: $) +$ M 3 .

The asymptotic bound is minimized at p = 4.67. This can be shown by differentiating the
coefficient expression for the term N M 2 with respect to p and equating to zero. One obtains

12p3 - 369p+ 500 = 0. (7)
The roots of this equation are 1.46, 4.67 and -6.13 respectively and p = 4.67 yields the
minimum.

The optimal value of p between 4 and 5 has an intuitive explanation. For square subgrids
nested dissection is obviously efficient. For an S x S subgrid the number of nodes on the
boundary is roughly 4s. When 4s reaches M, it pays to switch to a scheme similar to the natural
ordering.

Table I gives statistics for various N x M rectangular grids with a number of unknowns
NM = 30,000. These show that the LND ordering can substantially reduce arithmetic operations
for elongated grids.

3.2. Gauss elimination on vector-parallel supercompuiers

In the last few years pioneering work has been initiated by Storaasli et al.," who, using the
computing power of a Cray YMP with eight processors, were able to achieve impressive
execution rates for the direct solution of a symmetric set of 54,870 equations for the structural
analysis of the Space Shuttle Solid Rocket Booster. In the present work similar ideas are used
but with the following important distinctions:

1. The CFD system matrix is non-symmetric, i.e. the method is applied to a general, variable

2. A larger set of equations with a larger bandwidth is solved.
3. No special language other than Fortran is used.
4. The parallel-vector strategy is highly optimized.

In the following the underlying ideas of the vector-parallel Gauss elimination are discussed.

bandwidth matrix.

The vector-parallel Gauss elimination. The matrix is stored in a continuous vector containing
the entries row-by-row, with a variable bandwidth, i.e. in a skyline mode. Two indices need to

Table I. Factorization statistics, in millions, for N x M rectangular grids

Natural ordering Standard ND Local ND

N x M grid Non-zeros Op. count Non-zeros Op. count Non-zeros Op. count
~ ~~~ ~~ ~~

2000 x 15 0.478 4.523 0.533 7.221 0.430 4.161
lo00 x 30 0.928 15.758 0.7 16 15.35 1 0.621 9.794
500 x 60 1.826 58.376 0.887 29.098 0.819 2 1,022
250 x 120 2.615 223.842 1.008 44.679 0.990 39.781
200 x 150 4.507 346474 1.009 45.148 1.022 45.493

LARGE-SCALE CFD BY THE FEM 1091

be defined: the first to indicate the start of each row and the second to point out the farthest
row above it affecting its elimination.

The classical Gauss elimination procedure starts the elimination from the top of the matrix.
The elimination row is first divided by its diagonal and has multiples of it subtracted from all
the following rows to eliminate the column corresponding to its diagonal. In the approach of
Storaasli et al." the procedure is inverted, with a row selected to be operated on and all previous
rows affecting it being used to eliminate the corresponding columns of that row. This is obviously
more amenable to parallel computing, since at the row being eliminated synchronization is
needed only with a number of preceding rows equal to the number of processors. This is much
less than the continuous synchronization that would be required by the classical Gauss
elimination. In addition, the fact that many rows are available to be used for elimination of the
selected row allows loop unrolling, which will be described later.

The decomposition proceeds by assigning an equation to a processor. The elimination is
performed in parallel on the processors, using all previously completed factorized rows. As soon
as a processor has completed the factorization of a row, it operates on the next unfactorized
one. The vectorization is carried our on the row operations using loop unrolling of various
levels. The vector length is controlled by the bandwidth and the stride is unity, since all vector
components are contiguous.

Dynamic assignment of equations to processors. It should be recognized that each processor
must be initiated, taking some finite time to come on stream. Speed is therefore gained by
dynamically assigning equations to be operated on to the available processors. This is illustrated
in Figure 7 for a three-processor case.

Let us assume that equation 1 has been assigned to the first processor; it would be divided
by its diagonal in preparation for the elimination of subsequent rows. In the figure it is shown
that rows 2 and 3 are successively assigned to processor 1 as long as processors 2 and 3 are not
fully active yet. As soon as processor 2 is fully operational, the next equation to be eliminated
is assigned to it, in this case equation 4; processor 1 will then host equation 5. When processor
3 is activated, it is shown that it hosts equation 8, and so on. In addition, the figure illustrates

Processor
X I X X X I X I 1 starts, divides 1

Figure 7. Dynamic assignment of equations to processors

1092 W. G. HABASH ET A L

that in the second access of processor 3 no elimination is required, since no rows affect the
current one, and processor 3 immediately operates on the next available equation.

Dynamic loop unrolling. Loop unrolling is a technique to minimize the fetching and storing
of data to and from memory in a compute-intensive application. It consists of explicitly writing
out portions of a DO-loop to minimize the number of times data are stored back to memory.
As an example of a level-3 loop unrolling, consider the following:

DO 100 I = 1, M
DO 100 J = 1, N
A(J) = A(J) + B(I)*C(J,I)

100 CONTINUE

A level-3 unrolling of the above DO-loop can be written as

DO 100 I = 1, M, 3
DO 100 J = 1, N
A(J) = A(J) + B(I)*C(J,I) + B(I + l)*C(J,I + 1) + B(I + 2)*C(J,I + 2)

100 CONTINUE

Since memory access is costly, substantial savings are obtained by the unrolled form, since data
for A(J) remain in the vector register without having to be repeatedly stored back. On the current
Cray computers the optimal level of unrolling is found to be 7 for this particular type of
application.

Static and dynamic loop unrolling are illustrated in Figures 8(a) and 8(b) for a level-3 loop
unrolling. Storaasli et al." use level-9 loop unrolling and divide the matrix into blocks of nine
rows each. It can be seen for the level-3 example of Figure 8(a) that when a particular row is
being eliminated (shown by an arrow), normally two special blocks each having less than three
rows will occur. This means that special loop-unrolling statements must be written for both
blocks, with a lower level of unrolling and hence less efficiency.

By dynamically sizing blocks to start at the first row affecting the elimination, it is clear from
Figure 8(b) that only one special short block can occur. Over the large number of operations
involved in the matrix decomposition, this can translate into a sizable saving.

Dynamic elimination. In a static elimination procedure a block is only processed if all
information within that block is ready, i.e. the whole block has already been operated on, as
indicated for L - 1 blocks of Figure 9. This implies a wait state where a processor is idle if the
entire block operations are not yet complete, as shown in the same figure for block L.

On the other hand, in a dynamic elimination, instead of spending CPU cycles in an idle state,
the processor, in this case processor 1, is allowed to start operating on the completed portion
of the equation block L even if the whole block is not yet complete. While this partial block
operation affects the level of loop unrolling, the penalty is less than allowing a processor to
remain idle. At the termination of a partial block operation it is not unusual for the previously
uncompleted rows to have been operated on, and the row being eliminated can then be
completely processed.

Gauss elimination for Navier-Stokes. The Navier-Stokes solutions have been obtained on an
NEC SX-3/44 with four processors and 128 Mwords of memory and are compared with the
1990 results obtained on a Cray Research YMP-8 computer with eight processors and similar

LARGE-SCALE CFD BY THE FEM 1093

--....---..............- I
I

Figure 8(a). Static block unrolling

Figure 8(b). Dynamic block unrolling

memory. The equation sets solved are from the discretization of the Navier-Stokes equations
for a three-dimensional flow in a gas turbine pipe d i f f~ser , '~ shown in Figure 10. Access to the
Cray permitted its use in a dedicated model, while the operation of the NEC machine did not
permit us to use it as single users.

Although the physical non-linear problem of this paper is the solution of the Navier-Stokes
equations, the discussion in the rest of this section pertains to the application of the Gauss
elimination algorithm to the solution of the matrix at a single Newton step. Test case size
information is included in Table 11. The number of equations in the test cases ranges from about
6800 to over 100,000 and the bandwidth from 476 to 2877.

Table I11 presents the results obtained on the eight-processor YMP. Results indicate that the
speed-up from one to two processors is nearly 99% efficient. With eight processors the efficiency

LARGE-SCALE CFD BY THE FEM 1095

Table 111. 3D Navier-Stokes Gauss solver on the Cray YMP-8 in dedicated mode

1 224 443
2 227 449
3 238 469
4 247 490
5
6
7

869 1577 88%
884 1635 90 ?'o
933 1796 94%
973 1899 96%

2276
1980
2307

~

Table IV. 3D Navier-Stokes Gauss solver on the NEC SX-3/44 in non-dedicated mode

Test 1 CPU 2 CPU 3 CPU 4 CPU Speed-up
case (M flops) (MflOPS) (MflOPS) (MflOPd 1 to 4

1 1632 2924 3898 4389 67 Yo

3 1984 3567 4774 5274 66 %
2 1708 3057 4085 4577 67 %

4 2360 4280 5674 6188 66 %
5 2624 4733 6025 645 1 61 ?Lo
6 1846 3323 4420 5074 69 %
8 3119 5628 7335 9155 73 yo

is of the order of 96%. Results indicate that the larger the problem, the better the parallel
efficiency. The largest test cases attempted used nearly all the memory. Test case 5 has a large
number of unknowns and a moderate bandwidth, while test case 6 has half the unknowns but
double the bandwidth. The ratio between the two speeds also works out exactly to be
proportional to NB', where N is the number of equations and B is the bandwidth. The fastest
execution rate of 2.307 Gflops was obtained in test case 7, selected for its large bandwidth, which
improves vectorization by increasing the vector length. For the largest test case, i.e. test case 7,
the solution time on the Cray was 77 s.

The results of Table IV are from the tests run on the NEC machine. Test case 7 was not run
on the NEC and was replaced by test case 8. As mentioned previously, there was no provision
for its usage in dedicated mode and therefore the comparisons of speed-up from one to four
processors and the effect of problem size may not be accurately reflected in the table. Each
processor of the NEC can produce 16 floating point operations per clock cycle and hence requires
a longer vector length than the Cray to take full advantage of its capabilities. This is reflected in
test case 8, chosen for its large bandwidth. For the largest test case, i.e. test case 8, the solution
time on the NEC was 28 s.

4. ITERATIVE SOLVERS

4.1. Preconditioned conjugate-gradient-like algorithms

Direct methods such as Gauss elimination require O(NEQ2'33) operations (where NEQ is the
number of equations) for the factorization step and O(NEQ''67) operations for the substitution

1096 W. G. HABASH ET AL.

step, while storage requirements are proportional to O(NEQ''67) on an N x N x N = NEQ
mesh. Iterative methods for the Newton correction, on the other hand, can offer the advantage
of O(NEQ) storage and, under certain conditions, preconditioned conjugate gradient methods
can produce a machine-accurate solution in O(NEQ"") operations.'2 These estimates must,
however, be tempered by the sensitivity of iterative methods to matrix conditioning and by the
difficulty of vectorization for many preconditioning schemes. Some progress is being achieved in
adapting iterative methods to the capabilities of new architecture computer^.'^

The choice of iterative methods for the systems arising from the linearization of the
Navier-Stokes equations is limited by the non-symmetry and non-positive definiteness of the
matrix. Classical conjugate gradient methods, highly efficient for symmetric problems, become
inapplicable. One must use variants based either on minimization of the residuals, such as the
generalized minimum residual (GMRES) r n e t h ~ d , ' ~ or on extensions of the biconjugate gradient,
such as the conjugate gradient squared (CGS) method."

Experience with minimum residual methods indicates that they are not robust for non-positive
systems, often stagnating at some non-zero value of the residual. The only cure seems to be a
better preconditioning that makes the real part of the eigenvalues positive and redistributes them
better. Standard conjugate gradient methods, on the other hand, are more robust for systems
having eigenvalues with negative real part.I6 CGS therefore seems a good choice, since in
addition it has moderate storage requirements (six vectors) compared with GMRES, for which
it is often necessary to keep up to 20 of the previous solution^.'^ Both approaches may necessitate
the solution of the unsteady system, which is positive definite for small time steps.

Preconditioning for CGS. Preconditioning is an important issue and a good preconditioner
not only makes the difference between fast or slow convergence but between convergence and
divergence. Here a CGS method preconditioned by incomplete factorization (PCGS) has been
applied to the non-symmetric tangent matrix arising from the Newton linearization. Given a
matrix [K], one computes [S] = [L][U], an approximation of the factorization of [K], and
transforms the system

into the preconditioned one (PCGS)

[L]-'[K][U]-'{AZ} = - [L]- ' {R) (9)

(A 4 = [UI{Ax) (10)

where

This might be described as an equilibrated preconditioning, different from the left precondition-
ing

[S]-'[K](Ax} = - [S] - ' { R } (1 1)

generally employed in the implementation of the GMRES algorithm. It can be verified that (9)
implicitly sets on the finite-dimensional spaces new scalar products associated with [L]*[L]
and [UIT[U], which are positive definite, while a left preconditioning brings in a scalar product
defined by [SIP', which lacks this property when used with iterative methods such as CGS.
Indeed, a preliminary study showed that such left preconditioning for CGS yielded very poor
convergence properties that can probably be attributed to the non-positive definiteness of the
scalar product.

LARGE-SCALE CFD BY THE FEM 1097

It should also be mentioned that an attempt to increase the accuracy of the incomplete
factorization by permitting one level of fill-in showed no real gains for the problems tested. In
addition, the effect of ordering, considered to be important, was investigated. For symmetric
positive definite systems it has been shown’* that a good ordering can significantly improve the
efficiency of the modified incomplete factorization in which discarded non-zero terms are lumped
into the diagonal. Our preliminary experience with this method, however, was that reordering
led to no tangible improvement for the problems under consideration.

PCGS for Navier-Stokes: time marching and hybrid artiJicia1 viscosity. Iterative methods are
found to converge slowly, if they converge at all, for the 3D steady incompressible and
compressible Navier-Stokes equation^.'^ To improve the conditioning of the matrix system, a
time-marching procedure has been used here. The introduction of a time-dependent term in the
equations improves the conditioning of the matrix by the addition of a mass matrix [M]/At on
the diagonal:

In addition, for coarse grids a streamline diffusion is added to the problem on both sides of the
equation. This can be represented in the condensed form

This leads to an algorithm where the iteration matrix [K] is computed with progressively
lower values of the parameters E and part, referred to as cLHS and p t t s , but higher than those in
the residual denoted by tRHS and pffs. The residual is therefore computed with the smallest
possible values of these parameters for which the outer Newton iteration converges. This hybrid
artificial viscosity algorithm can be described as follows.

1. Set

&RHS = LHS E . RHS = LHS
Part Part 9

2. V and p being given, compute II RV, R, II o .

Newton iteration

3. Solve AVi and Api with PCGS at each Newton iteration:

4. Update V and p:

till IIRV,R,IJi+,/llRv,R,Ilo < lo-”; repeat from Step 3.

m = 6 for the second and subsequent cycles).
5. Lower eRHS and pfts and repeat from Step 2 if necessary (rn = 3 for the first cycle and

1098 W. G . HABASH ET AL.

Table V. Convergence properties of PCGS as a function of time
step; eRHS = cLHS = 0.05; pty = 0.025; p::' = 0.05

Average PCGS Total
Time Newton iterations per CPU hours
step iterations Newton step (SGI 4D/310)

0.5 152 10
1 .o 75 17
5.0 16 47

3.14
2.13
1.14

Normally two such cycles are sufficient. Numerical results are presented for the gas turbine
pipe diffuser of Figure 10. The solutions are obtained for a Reynolds number of 1000 on a
structured grid consisting of 25 planes in the flow direction, each with 135 nodes, leading to a
total of 11,521 unknowns.

Solutions have been obtained using this algorithm with various time steps. Table V shows
the effect of the time step on the convergence properties of the Newton method and PCGS. It
can be seen that increasing the time step from 0.5 to 5.0 reduces the number of Newton
iterations by a factor of nearly 10, while the number of PCGS iterations per Newton step
increases by a factor of nearly 5. The net outcome, however, demonstrates clearly that the
highest time step for which PCGS converges will lead to the smallest computational effort. It
must be noted that the PCGS method could not converge for the steady state equations, even
with very high damping values of E and parr on the left-hand side.

Figure 11 shows the effect of the time step on the PCGS convergence. The method is rapid
and uniform for small time steps. At large time steps convergence is slower and its behaviour
is non monotonic.

The effect of part is shown in Table VI. The convergence rate is significantly improved with
an artificial viscosity of 0.05. This is especially true for large time steps, where the convergence
rate can be increased by as much as 50%.

Figure 12 presents the storage requirements for a direct method with skyline storage compared
with PCGS. It should be remarked, however, that the various meshes used had the same number
of nodes per plane, which favours direct methods, since the bandwidth remains constant for all
meshes. This explains why the storage requirement is only O(NEQ''3) rather than O(NEQ''67).

I I I- - Atd.5 1

I I I

0 10 20 30 40
Iterations

Figure 11. Convergence of PCGS as a function of time step

LARGE-SCALE CFD BY THE FEM 1099

Table VI. Influence of pa,, and time step on convergence
properties; cRHS = cLHS; p:? = pk:s

PCGS PCGS
convergence rate convergence rate

Time
step

(E = 0.05, par, = 0.00) (E = 0.05, par, = 0.05)

0.5 0.335 (30*)
1 .o 0.166 (15*)
5.0 0.050 (1 *)

0346
0.201
0.073

10 L

10 6 6 1

10 Number of Equations
10

Figure 12. Memory requirement of PCGS and direct method as a function of number of equations (bandwidth constant)

10 4

A Total
----C. PCGS

101 I I
10 Number of Equations 10'

Figure 13. Solution time requirement of PCGS per Newton step as a function of number of equations

For the largest problem tested, involving about 100,000 variables, the ratio of storage is around
10, confirming the advantage of PCGS over direct methods in terms of memory requirements.

Figure 13 shows that the theoretical optimal rate of O(NEQ"") for the PCG method on
symmetric problems is also attained by the PCGS method for the non-symmetric test problems
presented here. It also shows that the matrix integration and assembly is O(NEQ) and relatively
important when compared with the incomplete factorization.

1100 W. G. HABASH ET AL.

It should be mentioned finally that the parallelism offered by a four-CPU Silicon Graphics
machine has not yet been utilized. Proper implementation of parallelism in the PCGS algorithm
could lead to some future gains in execution time.

4.2. Domain decomposition

Domain decomposition encompasses a wide range of approaches. For example, the Schwarz
decomposition has been used in its classical overlapping domain form by many, typified by
References 20 and 21, while more recently an effort has been made in the direction of
non-overlapping In References 22-24 the non-overlapping approach is interpreted
as an augmented Lagrangian method. Akay and E ~ e r , ~ ’ on the other hand, alternate between
specifying Dirichlet and Neumann conditions at the interfaces: in the first iteration the domains
are solved with a Dirichlet boundary condition and in the following iteration the numerical
Neumann condition is imposed, yielding the next Dirichlet condition, and so on. Dacles and
Hafez26 present a hybrid scheme solving the fully-coupled equations on subdomains and
communicating by solving the segregated variables on the global domain. In the following, only
two approaches are investigated and the augmented Lagrangian methods developed in Refer-
ences 22-24 are applied to the Navier-Stokes equations.

Overlapping domains. The first method tested is the classical Schwarz method, with a solution
sought on overlapping subdomains, using the latest values on the overlapping boundaries as
boundary conditions. This method is well understood for elliptic boundary value problems and
convergence proofs and estimates of the rate of convergence have been obtained in References
21 and 22. Results have also been obtained for incompressible viscous flows.”*22

In the present work the approach is applied to the incompressible flow in the gas turbine pipe
diffuser of Figure 10 at a Reynolds number of 200. Figure 14 shows convergence results with
the number of blocks varying from two to six and the number of planes of overlap from three
to five. As expected, convergence depends on both parameters. The top two curves demonstrate
that convergence is slowed down almost proportionally to the number of blocks used, for the
same number of planes of overlap, but that the convergence rate is relatively unaffected. The
bottom two curves demonstrate the effect of the degree of overlap: when this is increased from
three to five on two subdomains, the convergence rate is substantially improved.

It has not yet been attempted to compare between the solution times of the different

10

10

10

10 - z - 10
10

10

10

10

0

-1 - - - 2 B l ~ h . 3 P
.a
-3

4

-S

1

-7

0 10 20 30
Iterations

Figure 14. Convergence behaviour of Schwarz overlapping domain method

LARGE-SCALE CFD BY THE FEM 1101

partitioning methods. For example, a renumbering of the nodes over each subdomain can lead
to a greatly reduced bandwidth and dramatically reduced solution times when using a direct
solver.

Non-overlapping or side-by-side domains. For complex geometries, the overlapping subdomain
method introduces a difficult management of data structures and some redundant computations.
A variant of the method was proposed by Lionsz3 and Glowinski and Le TallecZ4 for simple
elliptic problems on non-overlapping domains. The approach is to solve on side-by-side
subdomains Robin-type problems, with an adjustment of the fluxes at the interfaces in order to
obtain convergence of the global problem.

The method is applied here to the incompressible Navier-Stokes equations

v * (V - EVP) = 0, (164

1 1
P Re

v-vv = -- vp + - vzv,

the boundary conditions being that at the inlet to the global domain

and at the exit

a V
- = 0,
an

A weak-Galerkin weighted residual formulation
equations

p = 0. (17b)

yields for the continuity and x-momentum

N f 2 J [(E P , - u)W, + (&py - u)W, + (EP, - w)K] d Q - Wds = 0, (18a)
i = l ni

5 lni [Re WV - Vu + (u, - Rep)W, + (uy - Rep)W, + (u, - Rep)W,] dni
i = 1

- Jm[2 - Repn) W ds = 0,

N being the number of non-overlapping subdomains. The above equations are then solved on
each subdomain with the following boundary conditions at nodes on the interfaces:

a V / h - Repn + rVV = ,Iv + rVVadj, (19b)

where r is a relaxation or penalty and (A p , A,) are Lagrange multipliers for the continuity and
momentum equations respectively.

1102 W. G. HABASH ET AL.

Introducing (19) into the Galerkin formulation, one has for the continuity equation,

+ j [(A, + rppad j - r p p) + V.n]W ds = 0

and for the x-momentum equation

f‘ In, [ReWV*Vu + (u, - Rep)W, + (uy - Rep)W, + (u, - Rep)@] dQi
i = 1

- la*, (A, + r,uadj - r,u)W ds = 0, (20b)

Therefore for each block one would be solving the following set of equations for continuity and
x-momentum :

LHS - la*, r,pW ds = RHS - (A, + rppadj)W ds, la*.
LHS + l*, I..

(21a)

r,uW ds = RHS - (A, + r,uadj)W ds, (21b)

where LHS and RHS correspond to those of the original equations on each subdomain before
domain decomposition.

The initial values of (A,, A,) can be taken as

A, = - Eap/an, (224

(22b)

(234

(23b)

Av = N / a n - Repn

and are updated as follows:
n t l = n

A p A p + r p (P a d j - P)”,

A; + r,(Vadj - V)n. A n + l = v

0 5 10 15 20 25 30
Iterations

figure 15. Augmented Lagrangian method for domain decomposition

LARGE-SCALE CFD BY THE FEM 1103

Results for the Navier-Stokes equations have been obtained for the gas turbine pipe diffuser
of Figure 10. Convergence depends, as expected, on the Reynolds number as shown in Figure
15 and this requires a good choice of the relaxation parameter r. Values of rp = 1 and rv zz Re
have proven to be a reasonably successful choice for the Reynolds numbers tested here.

These results demonstrate the potential of the method. Its robustness and convergence rates
could be improved by using PCGS as a preconditioner for a minimum residual algorithm applied
to the fully-coupled update of the Lagrange multipliers to minimize the jumps at the domain
interfaces.

5. CONCLUSIONS

It can be concluded that advanced supercomputers such as the Cray YMP or NEC SX-3 make
the use of large-scale direct solvers for the solution of CFD problems possible today. In this
respect it has been demonstrated that direct solution of the coupled sets of equations resulting
from the Euler and Navier-Stokes analysis of fluid problems is practical and that Gaussian
elimination procedures vectorize and parallelize well on such computers. Execution rates of over
2.3 Gflops can be attained and work is continuing on an out-of-core version of the method to
handle even larger CFD problems.

On the other hand, the performance of sparse matrix algorithms seems somewhat reduced
for three-dimensional problems in which the grid is more dense in one direction. The develop-
ment of algorithms such as the LND partially improves such technology, but not yet to the
point of making it competitive with other techniques. Further work is needed in three dimensions
to demonstrate the appropriateness of an LND sparse matrix technology.

The present application of preconditioned iterative methods such as PCGS to the solution of
linearized problems associated with the incompressible and compressible Navier-Stokes equa-
tions is quite successful. The introduction of time-dependent terms in the equations improves
the matrix conditioning. When this is coupled with a hybrid artificial viscosity method, i.e. higher
in the iteration matrix than in the physical matrix, a robust scheme is obtained.

Overlapping domain methodology has been investigated and an interesting side-by-side
technique has been introduced which, although not yet fully verified for high-Reynolds-number
problems, seems promising enough for the breakdown of large problems into subdomains
manageable by either direct or iterative solvers. An implicit method for solving for the Lagrange
multipliers at each global field update should considerably improve the speed of the method.

Undoubtedly, the continuing evolution of hardware will make it possible to take increasing
advantage of the properties of fully-coupled strategies for fluid dynamics problems. It is also
evident that none of the above four methods can single-handedly provide the solution for large
problems, but that combinations of them seem promising enough.

ACKNOWLEDGEMENT

This work was partially supported under Strategic and Operating Grants of the Natural Sciences
and Engineering Research Council of Canada (NSERC) and of the Fonds pour la Formation
de Chercheurs et 1’Aide a la Recherche (FCAR) of the Quebec Government. The continuous
support of Pratt & Whitney Canada is gratefully acknowledged.

The authors would like to thank Cray Research (Canada) Inc. and Cray Research Inc. for
their generosity in providing all necessary YMP access times, in dedicated mode, on their
computers.

The authors would also like to acknowledge the support of SiliconGraphics Computer Systems

1104 W. G. HABASH ET AL.

(Canada) Inc. for graciously providing the Concordia-Pratt & Whitney team with the 4D/340
platform on which all iterative methods were developed.

APPENDIX; NOMENCLATURE

element index
total number of elements
element influence matrix
global influence matrix
lower/upper triangular components of [K]
energy norm for residual = C(R?)
global mass matrix
normal to interface between subdomains
outward normal to a domain
total number of subdomains
pressure
relaxation factor
residual vector at nodes, residual norm
Reynolds number
time
global preconditioning matrix
velocity components
velocity vector
Galerkin weight function

Greek letters

A change in a variable
E pressure dissipation parameter
A Lagrange multiplier
P viscosity
P density
ni, dQi volume, surface area of a subdomain i

Subscripts

adj
art
i, j
P
u
U
V

x, Y ,
W

values from interface of adjacent block
artificial viscosity
nodal indices
related to continuity equation
related to x-momentum equation
related to y-momentum equation
pertaining to momentum equations
related to z-momentum equation
differentiation with respect to x, y, z

Superscripts

LHS left-hand-side

LARGE-SCALE CFD BY THE FEM

n iteration number
P contribution to pressure term
RHS right-hand side

1105

U
U
W

1.
2.
3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

contribution to u-velocity term
contribution to u-velocity term
contribution to w-velocity term

REFERENCES

T. H. Pulliam, ‘A computational challenge: Euler solution for ellipses’, AIAA J. 28, 1703-1704 (1990).
1. Lottati, S. Eidelman and A. Drobot, ‘A fast unstructured grid second-order solver’, AIAA Paper 90- 0699,1990.
G. Baruzzi, W. G. Habashi and M. M. Hafez, ‘Finite element solutions of the Euler equations for transonic external
flows’, AIAA J. 29, 18861893 (1991).
M. F. Peeters, W. G. Habashi, B. Q. Nguyen and P. L. Kotiuga, ‘Finite elements solutions of the Navier-Stokes
equations for compressible internal flows’. AIAA J . Propul. Power, 8, 192-198 (1992).
G. S. Baruzzi, W. G. Habashi and M. M. Hafez, ‘A second order method for the finite element solution of the Euler
and Navier-Stokes equations’, Proc. 13th Int. Con/: on Numerical Methods in Fluid Dynamics, Rome, July 1992,
Lecture Notes in Physics no. 414, Springer-Verlag. pp. 509-5.13.
A. George and J. W. H. Liu, Compukr S&ion ofL&e Sparse Positive Definite Systems, Prentice-Hall, Englewood
Cliffs. NJ. 1981.
C. Ashcroft, R. Grimes, I. Lewis, B. Peyton and H. Simon, ‘Progress in sparse matrix methods for large linear
systems on vector supercomputers’, Int. J. Supercomput. Appl., 1, (4), 10-30 (1987).
L. B. Wigton, ‘Applications of MACSYMA and sparse matrix technology to multielement airfoil calculations’, AIAA
Paper 87-1142-CP, 1987.
M. V. Bhat, W. G. Habashi, J. W. H. Liu, V.-N. Nguyen and M. F. Peeters, ‘A note on nested dissection for
rectangular grids’, SIAM J. Matrix Anal. Appl., 14, 253-258 (1993).
D. J. Rose and G. F. Whitten, ‘A recursive analysis of dissection strategies’, in J. R. Bunch and D. J. Rose (eds),
Sparse Matrix Computations, Academic, New York, 1976.
0.0. Storaasli, D. T. Nguyen and T. K. Agarwal, ‘Parallel-vector solution of large-scale structural analysis problems
on supercomputers’, AIAA J., 28, 1211-1216 (1990).
0. A. Axelsson and V. A. Barker, Finite Element Solution ofBoundary Value Problems, Academic, New York, 1984.
H. A. van der Voorst, ‘The performance of FORTRAN implementations for preconditioned conjugate gradients on
vector computers’, Parallel Comput. 3, 49-58 (1986).
Y. Saad and M. H. Schultz, ‘GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear
systems’, SIAM J. Sci. Stat. Comput., 17, 856-869 (1986).
P. Sonneveld, ‘CGS: a fast Lanczos-type solver for nonsymmetric linear systems’, SIAM J. Sci. Stat. Comput., 20,
3652 (1989).
M. Fortin, ‘Some iterative methods for incompressible flow problems, Comput. Phys. Commun., 53,393-399 (1989).
L. B. Wigton, N. J. Yu and D. P. Young, ‘GMRES acceleration of computational fluid dynamic codes’, AIAA Paper

E. F. D’Azavedo, P. A. Forsyth and W.-P. Tang, ‘Ordering methods for preconditioned conjugate gradient methods
applied to unstructured grid problems’, Res. Rep. CS-90-04, Department of Computer Science, University of
Waterloo, 1990.
G. F. Carey, K. C. Wang and W. D. Joubert, ‘Performance of iterative methods for Newtonian and generalized
Newtonian flows’, Inr. j. numer. methodsfluids, 9, 127-150 (1989).
G. Rodrigue, ‘Some ideas for decomposing the domain of elliptic partial differential equations in the Schwarz
process’, Commun. Appl. Numer. Methods, 2, 245-249 (1986).
P. L. Lions, ‘On the Schwarz’s alternating method’, Proc. First Int. Symp. on Domain Decomposition Methodsfor
Partial Differential Equations, SIAM, Philadelphia, PA, 1987.
R. Aboulaich and M. Fortin, ‘Schwarz’s decomposition method for incompressible flow problems’, Proc. First Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1988,
up. 333-349.

85-1494, 1985.

P. L. Lions, ‘On the Schwarz alternating method 111: a varient for nonoverlapping domains’, Proc. Third Int. Symp.
on Domain Decomposition Methods for Partial Diflerential Equations, SIAM, Philadelphia, PA, 1990, pp. 202-223.

24. R. Glowinski and P. Le Tallec, ‘Augmented Lagrangian interpretation of the nonoverlapping Schwarz alternating
method’. Proc. Third Int. Symp. on Domain Decomposition Methods for Partial Diyerential Equations, SIAM,
Philadelphia, PA, 1990, pp. 224231.

25. H. U. Akay and A. Ecer, ‘A block-structured finite element solution of viscous internal flows’, Proc. Int. ConJ on
Computational Methods in Flow Analysis, Okayama, 1988, pp. 328-333.

26. I. Dacles and M. M. Hafez, ‘Numerical methods for 3-D viscous incompressible flow using velocity-vorticity’, AIAA
Paper-90237, 1990.

